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Abstract
It is shown that the construction of Yang and Fendley (2004 J. Phys. A:
Math. Gen. 37 8937) to obtain supersymmetric systems leads not to the
open XXZ chain with anisotropy � = − 1

2 but to systems having dimensions
given by Jacobstahl sequences. For each system the ground state is unique.
The continuum limit of the spectra of the Jacobstahl systems coincide,
up to degeneracies, with that of the Uq(sl(2)) invariant XXZ chain for
q = exp(iπ/3). The relation between the Jacobstahl systems and the open
XXZ chain is explained.

PACS numbers: 05.50.+q, 03.65.Fd

Yang and Fendley [1] have given a construction to obtain supersymmetric systems given by
Hamiltonians H obeying N = 2 supersymmetry:

{Q,Q†} = H, Q2 = 0, (1)

[F,Q] = −Q. (2)

Here Q and Q+ are the supercharges and F is the Fermion number operator. Their results
imply that a special combination

H =
∞⊕

L=1

H
(L)
XXZ (3)

of the L site XXZ open quantum chains, at anisotropy � = −1/2, which in terms of the
standard Pauli matrices are given by

H
(L)
XXZ = −1

2

L∑
i=1

(
σx

i σ x
i+1 + σ

y

i σ
y
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σ z

i σ z
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+

3L − 1

4
(4)
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is supersymmetric. They also show that the ground-state energy of the Hamiltonian given by
(4) is zero. The last fact is correct but can be proven by other methods [2]. However for the
Hamiltonian (3) one cannot derive a continuum limit or even compare it with experiments.
In this letter we are going to show that another use of the supercharges defined by Yang and
Fendley [1] can lead to the construction of finite-dimension quantum spin systems with a
well-defined thermodynamical limit (L → ∞). We also give a possible explanation of the
observation [3] that the ground-state wavefunction of H

(L)
XXZ is given by positive integers.

Instead of defining the Q operator given in (1)–(2) in terms of fermionic operators, as
done in [1] we give their matrix elements on an appropriate representation of the vector space.
This operator, that we denote by Q(L,L+1), acts on a Hilbert space of dimension 2L ⊕ 2L+1

spanned by the vector basis {|vL〉} ⊕ {|vL+1〉}, where {|vL〉} = {|s1, . . . , sL〉}, {|vL+1〉} =
{|s ′

1, . . . , s
′
L+1〉}, si, s

′
j = ± , is the standard σz− basis, namely,

Q(L,L+1) =
L∑

j=1

Q
(L,L+1)
j ,

Q
(L,L+1)
j |s ′

1, . . . , s
′
j , . . . , s

′
L+1〉 = 0,

Q
(L,L+1)
j |s1, . . . , sj , . . . , sL〉 = (−)j−i |s1, . . . , sj−1, +, +, sj+1, . . . , sL〉δsj ,−,

(5)

where (j = 1, . . . , L). It is immediate from (5) to see that Q
(L,L+1)
i Q

(L,L+1)
j = 0, implying

(Q(L,L+1))2 = 0. We can define non-local L-site quantum chains H
(L)
1 and H

(L)
2 acting on the

vector space spanned by {|vL〉} of dimension 2L by

Q(L,L+1)Q(L,L+1)† = O(L) ⊕ H
(L+1)
2 ,

Q(L,L+1)†Q(L,L+1) = H
(L)
1 ⊕ O(L+1),

(6)

where OL′
(L′ = L,L + 1) is the matrix with zero elements in the space of dimension 2L′

spanned by {|vL′ 〉}. We can verify the following properties of H
(L)
1 and H

(L)
2 :

H
(L)
1

† = H
(L)
1 , H

(L)
2

† = H
(L)
2 ,

[
Sz,H

(L)
1

] = [
Sz,H

(L)
2

] = 0,

Sz|s1, . . . , sL〉 =
(

L∑
i=1

si

)
|s1, . . . , sL〉.

(7)

We can also verify that

H(L+1)
s = {

Q(L,L+1),Q(L,L+1)†} = H
(L)
1 ⊕ H

(L+1)
2 �= H

(L)
XXZ (8)

and consequently the L site XXZ open chain is not supersymmetric.
The correct relation among these quantum chains with the H

(L)
XXZ is given by

H
(L)
XXZ = H

(L)
1 + H

(L)
2 . (9)

Moreover we can also verify that

H
(L)
1 H

(L)
2 = H

(L)
2 H

(L)
1 = 0, (10)

which imply that H
(L)
1 ,H

(L)
2 and H

(L)
XXZ share the same eigenvectors, and the non-zero

eigenvalues of H
(L)
1 or H

(L)
2 are the same as those of H

(L)
XXZ . For general values of L
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the Hamiltonian H
(L)
1 obtained from (6) is given by

H
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1 = −1

2
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k

)
, (11)

where

Ai,k =



0 if k < i + 2
1 if k = i + 2(

1
2 �σk−2 �σk−1 + 1

2

) · · · ( 1
2 �σi+2 �σi+3 + 1

2

)(
1
2 �σi+1 �σi+2 + 1

2

)
if k > i + 2

and �σ = (σ x, σ y, σ z), σ± = (σ x ± σy)/2 and [L/2] = Int(L/2). The quantum chain H
(L)
2

is obtained from H
(L)
1 and H

(L)
XXZ by using (4) and (9) . Some examples for L = 2 and L = 3

are

H
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.

Note that in order to find the eigenvalues and eigenfunctions of H
(L)
1 and H

(L)
2 one has

to use the eigenfunctions of H
(L)
XXZ which can be obtained using the Bethe ansatz. Of the 2L

eigenvalues of H
(L)
XXZ ,

1

3

[
2L − [3 − (−1)L]

2

]
(14)

can be found in H
(L)
2 and the remaining

1

3

[
2L+1 +

[3 − (−1)L]

2

]
(15)

in H
(L)
1 . The ground-state energy being included in this last set. All the eigenvalues of H

(L)
1

and H
(L)
2 not belonging to the sets (14) and (15) are equal to zero.

The quantum chain H
(L)
XXZ although having a zero-energy ground state and all the

eigenlevels real and positive numbers is not supersymmetric. The Hamiltonian H(L+1)
s with

3 × 2L states given by (8) is supersymmetric. The supercharges connect states with Sz = m

in the 2L vector space with states with Sz = m + 3 in the 2(L+1) vector space. The non-
zero energies appear in doublets (some of them degenerate) and the zero energy is highly
degenerate. The degeneracies of the zero energy level can be computed using equations (14)
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and (15). Can we define supersymmetric systems with an unique ground state and the other
energy levels coinciding with those of H(L)

s ? The answer is yes but the path is long. One starts
with L = 2 and takes the two states corresponding to Sz = 0 (| − +〉 and | + −〉) and one state
with Sz = −2 (|−−〉) to which we apply Q(2,3) defined by (5). One gets the two states |+ ++〉
and (| + +−〉 − | − ++〉). Using this definition of Q(2,3) in this subspace only, one obtains a
supersymmetric system with five states defined by the Hamiltonian H

(3)
J . What we have done

is to truncate the vector space of H
(2)
1 ⊕ H

(3)
2 . We denote by H

(2)
1,t and H

(3)
2,t the Hamiltonians

acting in the truncated spaces. Obviously

H
(3)
J = H

(2)
1,t ⊕ H

(3)
2,t . (16)

In order to obtain the truncated vector space in which H
(3)
1,t acts, one has to take the vector

space which is orthogonal to the one which H
(3)
2,t acted. This is a six-dimensional vector space:

Sz = −3 (1 state), Sz = −1 (3 states) and Sz = 1 (2 states: (| + +−〉 + | − ++〉) and | + −+〉).
One can proceed further. (A look at appendix A of [5] might help the reader to follow the
steps). One uses Q(3,4) applied to the six states to find the vector space in which H

(4)
2,t acts

and find that supersymmetric Hamiltonian H
(4)
J which acts in an 11-dimensional space etc . . .

Applying consistently this procedure, we find that the supersymmetric Hamiltonian

H
(L)
J = H

(L−1)
1,t ⊕ H

(L)
2,t (17)

acts in a vector space of dimension

1
3 [2L+1 + (−1)L]. (18)

The numbers obtained using equation (18) are called Jacobstahl numbers and they have
interesting combinatorial interpretations [4]. One can use now the results of [5] (equations (3.5)
and (3.6)) to obtain the spectrum of H

(L)
J . It can be obtained from the spectrum of an Uq(sl(2))

(for q = eiπ/3) symmetric quantum chain with L sites (see [5], equation (2.12)) using the
following rule: (a) there is a unique ground state of energy zero (if L is odd, the ground state of
the Uq(sl(2)) symmetric chain is doubly degenerate) (b) the degeneracy of a non-zero energy
level in H

(L)
J is equal to 2/3 the degeneracy of the same level in the Uq(sl(2)) symmetric

chain. Using this observation and the known results on the finite-size scaling of the spectra of
the Uq(sl(2)) symmetric chain [6] for q = eiπ/3 one can easily derive the conformal properties
of the Jacobstahl systems.

We did not try to generalize our observations to other spin chains.
Before closing our letter, let us mention a fact observed independently by several people

[3]. The ground-state wavefunction of H
(L)
XXZ given by equation (4) has positive integer

coefficients. Positive coefficients occur if the ground-state wavefunction is associated with
a Hamiltonian which describes a stochastic process (the ground-state energy has to be zero,
which is the case). The ground-state wavefunction of a stochastic process can be interpreted as
a probability distribution function and therefore has positive coefficients. One can show that
in H

(L)
J , in the sector in which the ground state is found, one can define a stochastic process.

If the fact that the coefficients are integer has a more profound explanation, remains to be
seen.
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